Theoretical Foundations for Machine Learning
An Introduction to PAC Learning

Ameya Daigavane

Introduction

Introduction

What will we be covering?

- The PAC Learning Model

- Bias-Complexity Tradeoff

- The No-Free-Lunch Theorem
- VC-Dimension

Textbook: Understanding Machine Learning by Shai-Shalev Shwartz
and Shai Ben-David.

A lot of the material here is from the textbook, chapters 2 to 6. We
will also be solving problems from the end of each chapter of the
textbook.

Introduction

Before we dive in, it is important to ask the following questions:

- What does it mean to learn?
- What can we learn?

- How can we learn?

Introduction

Before we dive in, it is important to ask the following questions:

- What does it mean to learn?
- What can we learn?

- How can we learn?

We will see answers to these, one-by-one.

The Probably Approximately Correct Learning Model

The Probably Approximately Correct Model of Learning was
formalized by Leslie Valiant at Harvard University in 1984.

The PAC Model was groundbreaking - providing a formal
mathematical framework for machine learning.

Leslie Valiant won the ACM Turing Award in 2010 for his contributions
to theoretical computer science.

The Probably Approximately Correct Learning Model

The Probably Approximately Correct Model of Learning was
formalized by Leslie Valiant at Harvard University in 1984.

The PAC Model was groundbreaking - providing a formal
mathematical framework for machine learning.

Leslie Valiant won the ACM Turing Award in 2010 for his contributions
to theoretical computer science.

Before we go into the details of this model, we need to revise some
concepts.

Machine Learning Terminology

Definitions: Learner Input

To explain what the learner does, we first describe what is accessible
to the learner:

- The Domain/Instance Set
The domain set X is the set of all objects we can label. These
objects are usually represented by a vector of features.

- The Label Set
The label set Y is the set of labels we assign to objects from X.

- Training Data
The training set S is a sequence of m pairs from X x Y. Note that
repetitions are allowed!

S={(x,y1), - (Xm,ym)}

Definitions: Learner Output

Using the inputs given, the learner produces a prediction rule, a
function h mapping X to Y.

This function is also called a classifier, a predictor, or a hypothesis.

Definition: Measures of Success

The measure of success of a classifier is how accurate its outputted
prediction rule h is.

Definition: Measures of Success

The measure of success of a classifier is how accurate its outputted
prediction rule h is.

The true error of a classifier is the probability of predicting the
wrong label, according to some distribution D over X. Formally, the
error of a prediction rule, with respect to some distribution D, and
true labelling function f, is

Lio(h) = P(h(x) # f(x))

Definition: Measures of Success

The measure of success of a classifier is how accurate its outputted
prediction rule h is.

The true error of a classifier is the probability of predicting the
wrong label, according to some distribution D over X. Formally, the
error of a prediction rule, with respect to some distribution D, and
true labelling function f, is

Lio(h) = P(h(x) # f(x))

Clearly, the true error then depends on both the distribution D, as
well as the true labelling function f. Remember, the learner has no
access to either of these.

Empirical Risk Minimization

The learner cannot compute the true error. However, it can compute
the training error over the training set S as follows:

‘{I € {1727"' 7m} : h(X,‘) #f(XI)H

Ls(h) = o

Empirical Risk Minimization

The learner cannot compute the true error. However, it can compute
the training error over the training set S as follows:

‘{I € {1727"' 7m} : h(Xi) #f(X,)H

Ls(h) = o

The learning paradigm that seeks to minimize the training error is
called Empirical Risk Minimization (ERM).

The ERM rule can lead to overfitting! A learner using the ERM rule
might yield excellent performance on the training set, but might still

have large true error. This indicates that the learner has not
generalized well.

Inductive Bias

How can we fix this? One solution is to use a restricted hypothesis
space.

Inductive Bias

How can we fix this? One solution is to use a restricted hypothesis
space.

Before receiving any input, the learner must fix a set of hypothesis,
called the hypothesis class H. Every function in H is a function from
XtoY.

The ERM4 learner seeks a hypothesis h from H with the lowest
training error. Note that there may be many such hypotheses.

ERM«(S) € argmin Ls(h)
heH

Inductive Bias

How can we fix this? One solution is to use a restricted hypothesis
space.

Before receiving any input, the learner must fix a set of hypothesis,
called the hypothesis class H. Every function in H is a function from
XtoY.

The ERM4 learner seeks a hypothesis h from H with the lowest
training error. Note that there may be many such hypotheses.

ERM«(S) € argmin Ls(h)
heH

This is an example of an inductive bias - we are biasing the learner
towards a particular set of hypothesis. Later, we will see that
inductive bias is actually necessary, in the context of PAC learning.

Finite Hypothesis Classes

The question now is, what choices of H will ensure that ERMy will
not overfit?

Suppose we consider finite hypothesis classes. We now analyse the
performance of the ERMy learner under some additional
assumptions.

Realizability: There exists h* in H such that Lpp(h*) = 0.

Independent and Identically Distributed (iid) Samples: The samples
in the training set are independently and identically distributed
according to D. We write, S ~ D™.

Learning Parameters

There is always the possibility of receiving a non-representative
training set S. Thus, we cannot always guarantee that our learner will
output a satisfactory hypothesis.

Instead, we quantify the performance of the learner by two
parameters:

- Confidence Parameter 1 — 6
The probability of getting a non-representative training set is
given by 4. Then, 1 — ¢ refers to the confidence parameter.

- Accuracy Parameter ¢
The learner might not be completely accurate when predicting

labels. We want to bound the probability of failure, which is the
event Lps(h) > e.

1

Finite Hypothesis Classes: Proof

Define Hjp as the set of bad hypotheses from H.

Hp = {h eH: L(D)f)(h) > 6}

Finite Hypothesis Classes: Proof

Define Hjp as the set of bad hypotheses from H.

Hp = {h eH: L(D)f)(h) > 6}

Define M as the set of potentially misleading training sets.

M = {S : There exists h € Hg, Ls(h) = 0} = | J {Sy: Ls(h) = 0}
heHsg

Finite Hypothesis Classes: Proof

Define Hjp as the set of bad hypotheses from H.

Hp = {h eH: L(D)f)(h) > 6}

Define M as the set of potentially misleading training sets.

M = {S : There exists h € Hg, Ls(h) = 0} = | J {Sy: Ls(h) = 0}
heHsg

Further, let hs be the learner’s output hypothesis, when given the
training set S. Now, the realizability assumption gives us:

{Sx: Lps(hs) > e} M

Finite Hypothesis Classes: Proof

Thus,

D™({Sx : Lioyy(hs) > €}) < D™(M)
<) D({Sx: Ls(h) = 0})

heHts

= 3" (O : h(x) = Fx)D)"

S |HB|876m
< [H|e™ ™.

Finite Hypothesis Classes: Proof

Thus,
Dm{SX : L(DD(hS) > 6} < |/H|€76m.

If we take m such that,

m > o2 ([#1/9)
€
Then, no matter which labelling function f and distribution D

(assuming realizability), with probability of at least 1 — § over the
choice of m training samples, for every ERM hypothesis hs, we have,

L(D,f)(hS) <e

14

Finite Hypothesis Classes: Proof

Thus,
Dm{SX : L(DD(hS) > 6} < |/H|€76m.

If we take m such that,

m > o2 ([#1/9)

€
Then, no matter which labelling function f and distribution D
(assuming realizability), with probability of at least 1 — § over the
choice of m training samples, for every ERM hypothesis hs, we have,

L(D,f)(hS) <e

Now, we can state what it means for a hypothesis class to be PAC
learnable.

14

PAC Learnability

A hypothesis class H is said to be PAC learnable if there exists a
function my : (0,1)> — N and a learning algorithm with the
following property:

For every e,9 € (0,1), for every distribution D over X, and for every
labelling function f: X — {0, 1}, if the realizability assumption holds,
then, when running the learning algorithm on a training set S of
m > my (e, d) iid samples generated from D, and labelled by f, the
algorithm returns a hypothesis hs, such that, with probability at least
1-96,

Lop(hs) <e

Sample Complexity

From the previous definition, finite hypothesis classes are PAC
learnable. Specifically, the ERM learning algorithm can learn any

finite hypothesis class. For the number of samples, w worked.

16

Sample Complexity

The sample complexity indicates how many samples we need in the
training set to achieve some given accuracy e with some given
confidence 1— 6.

Formally, given some ¢, ¢, the sample complexity my (e, d) is defined
as the minimal number of samples required to meet the
requirements of PAC learnability for H.

Thus, every finite hypothesis class H is PAC learnable with sample
complexity,
mote.) < 28 UHI/0)

- €

What next?

Apart from finite hypothesis classes, what other hypothesis classes
are PAC learnable? Can the realizability assumption be relaxed? It
seems fairly restrictive.

We will look at these questions - as well as some surprising results -
in the next lectures .

Solution to Class Problem

The problem asked in class was, on fixing D and f, show that,
E [Ls(h)] = Los(h)
Sx DM

The calculation given in class was misleading - apologies. Here, I'm
giving the intended solution - which works for all cases, not just
when X is finite.

,] m
Ls(h) = - > Tnge)ftn)
=1

Note that, the definition of an indicator random variable and the iid
assumption gives us:

Elneo)2x)] = P(h(xi) # f(xi)) = P(h(x) # f(x))

Then, linearity of expectation implies:

m

E[Ls(M)] = %Z P(h(x) # f(x)) = P(h(x) # f(x)) = Lof(h)

i=1
as required. 19

	Introduction
	Machine Learning Terminology

